Search results for "Chromatin remodeling"
showing 10 items of 56 documents
Comprehensive analysis of interacting proteins and genome-wide location studies of the Sas3-dependent NuA3 histone acetyltransferase complex
2014
Highlights • We characterise Sas3p and Gcn5p active HAT complexes in WT and deleted TAP-strains. • We confirm that Pdp3p interacts with NuA3, histones and chromatin regulators. • Pdp3p MS-analysis reveals its phosphorylation, ubiquitination and methylation. • Sas3p can substitute Gcn5p in acetylation of histone H3K14 but not of H3K9. • Genome-wide profiling of Sas3p supports its involvement in transcriptional elongation.
Circulating Histones and Nucleosomes as Biomarkers in Sepsis and Septic Shock
2016
Sepsis, severe sepsis, and septic shock are among the leading causes of death worldwide and their incidence is constantly increasing. Despite early intervention in intensive care units (ICUs) mortality remains high. There is great interest in understanding the genetics and epigenetics of the host in response to infection because of two reasons: the peculiarities of each patient, and the unclear associations identified between genetic polymorphisms and susceptibility to sepsis. In addition, chromatin remodeling and epigenetic changes occur in crucial genes involved in the inflammatory response and also in the immunosuppression found in sepsis. The early and accurate diagnosis of sepsis is a …
Multiple roles for ISWI in transcription, chromosome organization and DNA replication.
2003
ISWI functions as the ATPase subunit of multiple chromatin-remodeling complexes. These complexes use the energy of ATP hydrolysis to slide nucleosomes and increase chromatin fluidity, thereby modulating the access of transcription factors and other regulatory proteins to DNA. Here we discuss recent progress toward understanding the biological functions of ISWI, with an emphasis on its roles in transcription, chromosome organization and DNA replication.
Sex-specific windows for high mRNA expression of DNA methyltransferases 1 and 3A and methyl-CpG-binding domain proteins 2 and 4 in human fetal gonads
2006
DNA methyltransferases (DNMTs) and 5-methyl-CpG-binding domain proteins (MBDs) are involved in the acquisition of parent-specific epigenetic modifications in human male and female germ cells. Reverse Northern blot analyses demonstrated sex-specific differences in mRNA expression for the maintenance DNMT1 and the de novo DNMT3A in developing testis and ovary. In fetal testis DNMT1 and DNMT3A expression peaked in mitotically arrested spermatogonia around 21 weeks gestation. In fetal ovary transcriptional upregulation of DNMT1 and DNMT3A occurred during a very brief period at 16 weeks gestation, when the oocytes proceeded through meiotic prophase. Fetal gonads showed several fold higher DNMT3A…
Excess of de novo variants in genes involved in chromatin remodelling in patients with marfanoid habitus and intellectual disability.
2020
PurposeMarfanoid habitus (MH) combined with intellectual disability (ID) (MHID) is a clinically and genetically heterogeneous presentation. The combination of array CGH and targeted sequencing of genes responsible for Marfan or Lujan–Fryns syndrome explain no more than 20% of subjects.MethodsTo further decipher the genetic basis of MHID, we performed exome sequencing on a combination of trio-based (33 subjects) or single probands (31 subjects), of which 61 were sporadic.ResultsWe identified eight genes with de novo variants (DNVs) in at least two unrelated individuals (ARID1B, ATP1A1, DLG4, EHMT1, NFIX, NSD1, NUP205 and ZEB2). Using simulation models, we showed that five genes (DLG4, NFIX, …
IL-17A induces chromatin remodeling promoting IL-8 and TSLP release in bronchial epithelial cells. Effect of Tiotropium.
Poly-ADP-Ribose (PAR) as an epigenetic flag
2009
Epigenetics is the study of hereditable chromatin modifications, such as DNA methylation, histone modifications, and nucleosome-remodelling, which occur without alterations to the DNA sequence. The establishment of different epigenetic states in eukaryotes depends on regulatory mechanisms that induce structural changes in chromatin in response to environmental and cellular cues. Two classes of enzymes modulate chromatin accessibility: chromatin-covalent modifiers and ATP-dependent chromatin remodelling complexes. The first class of enzymes catalyzes covalent modifications of DNA as well as the amino- and carboxy-terminal tails of histones, while the second uses the energy of ATP hydrolysis …
In vivo GSH depletion induces c-myc expression by modulation of chromatin protein complexes.
2009
Abstract We hypothesize that glutathione (GSH) fluctuations could have a prominent role in the modulation of c-myc expression through a mechanism affecting chromatin remodeling complexes. This could lead to an open chromatin structure accessible to transcription factors. We studied the in vivo effect of GSH depletion on these complexes bound to the c-myc promoter in the liver of l-buthionine-(S,R)-sulfoximine (BSO)-treated rats. Using chromatin immunoprecipitation we found that 3 h after BSO treatment the repressing complexes Id2 and Sin3A (part of a histone–deacetylase complex) were released from the c-myc promoter. STAT3 was phosphorylated and associated with its coactivator p300 with int…
An essential switch in subunit composition of a chromatin remodeling complex during neural development.
2007
Summary Mammalian neural stem cells (NSCs) have the capacity to both self-renew and to generate all the neuronal and glial cell-types of the adult nervous system. Global chromatin changes accompany the transition from proliferating NSCs to committed neuronal lineages, but the mechanisms involved have been unclear. Using a proteomics approach, we show that a switch in subunit composition of neural, ATP-dependent SWI/SNF-like chromatin remodeling complexes accompanies this developmental transition. Proliferating neural stem and progenitor cells express complexes in which BAF45a, a Kruppel/PHD domain protein and the actin-related protein BAF53a are quantitatively associated with the SWI2/SNF2-…
The human X chromosome is enriched for germline genes expressed in premeiotic germ cells of both sexes.
2006
The role of X-chromosomal genes in spermatogenesis has been subject to a number of studies in different organisms. Recently, it was proposed that the X chromosome has a predominant role in premeiotic stages of mammalian spermatogenesis. We analyzed the expression of a representative set of 17 X-linked and 48 autosomal germline-restricted genes in different stages of human germ cell development. In accordance with data from other species, we show that the human X chromosome is indeed significantly enriched for genes activated in premeiotic stages of spermatogenesis. In contrast to recent studies, however, we found that expression of these genes is not restricted to spermatogenesis, but is ac…